© 2022 joksystem
   A villamos energia és szakképesítés
SI - mértékegységek 
   Feszültségmentesítés szabályai
   Eelméletek, fogalmak
Anyag a mágneses térben 
Vezeték méretezése 
- Tedd próbára magad - 
   Érintésvédelem
Védővezetős érintésvédelem 
Nullázás (TN-rendszer) 
Védőföldelés (TT-rendszer) 
Egyenpotenciálra hozás (EPH) 
Védõvez. nélküli érintésvédelem 
Az érintésvédelem ellenőrzése 
Villamos berendezések (IP) 
   Túláramvédelem
   Védelmi eszközök
Olvadó biztosító 
Kismegszakítók 
Áram-védőkapcsoló (AVK) 
Ívhiba elleni védelem (AFDD) 
Túlfeszültség védelem (SPD) 
   Villámvédelem
Külső villámvédelem 
Belső villámvédelem 
   Hálózatra csatlakozás
Hálózatrendszerek 
Fogyasztói vezetékhálózat 
Fogyasztásmérőhelyek 
   Villamos gépek
Transzformátorok 
Egyenáramú gépek 
Szinkrongépek 
Aszinkrongépek 
   Épületvillamossági szerelés
Épületszerkezeti ismeretek 
Villamos szerelési anyagok 
Vezeték szerelési módok 
Kapcsolókészülékek 
Villamos rajz 
Világítási alapkapcsolások 
Fűrdőszobák szerelése 
   Vezérlés és szabályozás
Vezérlés 
Szabályozás 
   Mérés a villamos áramkörben
Mérőműszerek ismerete 
Műszer méréshatár bővítése 
Mérőműszerek használata 
Mérési jegyzőkönyv 
Mérőműszerek készítése házilag 
LETÖLTÉSEK 
   Megújuló energia
   Sebességmérés hazánkban
Traffipaxok fajtái 
Traffibox, forgalomellenőrzés 
Sebességkijelző táblák 
A VÉDA rendszer 
Mérőberendezések listája 
GPS alapú keresés 
TIVEDA mrbig jóvoltából 
TIVEDA továbbfejlesztése 1 
TIVEDA továbbfejlesztése 2 
Bejelentkezés
Belépés Regisztrálás


Felhasználók száma: 2113

Bejelentkezve:


Anyag viselkedése mágneses térben
Mint az elektromos tér esetében, a mágneses térben ható erő nagysága (azaz a mágneses indukció értéke) is függ a teret kitöltő anyag minőségétől. Ezt jellemző mennyiség a mágneses permeabilitás, ami a mágneses indukció és a térerősség között létesít kapcsolatot.

B = μ * H

A mágneses permeabilitás két tényezője a μ két tényezőre bontható:
μ = μ0 * μr

a vákuum mágneses permeabilitása, értéke: μ0 = 4𝝅10-7VsAm

μr a relatív permeabilitás, amely megmutatja, hogy az indukció hányszor lesz nagyobb, ha a teret vákuum helyett valamilyen anyag tölti ki.
Vákuum esetén μr = 1; levegő, fa, víz, papír stb. esetén μr ≈ 1.
Azokat az anyagokat, amelyeknél a külső mágneses tér megszűnése után is fennmarad a rendezett állapot, állandó mágneseknek nevezzük.

Az anyagok viselkedése mágneses térben. Az anyagot felépítő atomok mágneses tulajdonsággal rendelkeznek, amelyet az atomban mozgó elektromos töltések okoznak.

μr alapján az anyagokat három csoportra osztjuk: dia-, para- és ferromágneses anyagok.

Az elektrotechnikai gyakorlatban általában minden nem-ferromágneses anyag vákuumnak (levegőnek) tekinthető és relatív permeabilitása μr = 1.

Diamágnesek (arany, ezüst, réz, kén, víz, nemesgázok) azok az anyagok, amelyekben nincsenek domének, mivel az elektronok keringéséből és spinjéből származó mágneses hatások kompenzálják egymást. Ezért μr < 1.

Paramágnesek (mangán, alumínium) ezek atomjai elemi mágneseket alkotnak, μr > 1.

Ferromágnesek (vas, nikkel, kobalt és ötvözeteik) (μr >> 1 ezek az anyagok képesek a legnagyobb mértékben megnövelni a külső tér indukcióértékét. A ferromágneses anyagok relatív permeabilitása a telítésig igen nagy lehet, nagyságrendje akár 103-106. (Nem-ferromágneses összetevőkből is készítenek jól mágnesezhető ötvözeteket.)
A mágnesezési görbe (hiszterézis)
A telítettségig felmágnesezett ferromágneses anyagban a térerősséget fokozatosan csökkentve a mágneses indukció nem a mágnesezési görbe szerint csökken. Még H=0 esetén is jelentős indukció Br mérhető. A megmaradó indukciót remanens mágnesességnek, vagy remanenciának nevezzük és Rr-rel jelöljük. A Br csak ellentétes irányú, és meghatározott nagyságú térerősséggel szüntethető meg.

Azt a térerősséget, amely az anyagban a mágneses indukciót nullára csökkenti, koercitív erőnek nevezzük és Hc-vel jelöljük.

Az ábrán látható, hogy amennyiben az anyagot egyszer már felmágneseztük, a kezdő „a" pontba még egyszer nem juthatunk vissza. Az innen induló görbét „a b c d" ezért első mágnesezési görbének nevezzük.
Az anyagok átmágnesezéséhez energiára van szükség, amely az anyag felmelegedését okozza. Az erre fordított energiát hiszterézis veszteségnek nevezzük.

Az anyagokat a Hc érték szerint két nagy csoportra osztjuk:
Azokat az anyagokat, amelyeknél a koercitív erő Hc értéke 103 ...105 A/m között van, keménymágneses anyagoknak nevezzük. A keménymágneses anyagok hiszterézis görbéje széles. Ilyenek az állandó mágnesek, amelyeket különböző berendezésekben, motorokban, műszerekben, hangszórókban mágneses tér előállítására használnak.
A lágymágneses anyagok csoportjába azok az anyagok tartoznak, amelyeknél a koercitív erő Hc értéke kisebb, mint 103 A/m. Emiatt a lágymágneses anyagok hiszterézis görbéje keskeny. A lágymágneses anyagok közé tartozik a lágyvas, a transzformátorlemez, ezek mind ferromágneses anyagok. Felhasználhatók indukció növelésére, fluxus vezetésére, összegyűjtésére, valamint mágneses és elektromos árnyékolásra.

A hiszterézis veszteség függ az anyag Hc értékétől, és a tér váltakozásának frekvenciájától. A lágymágnesek hiszterézis vesztesége kicsi.
Tulajdonos Kapcsolat A. SZ. F.